Summary

Google Scholar profile
Scopus profile

Articles

[ 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2007 ]

2023

[50] Bochow, N., Poltronieri, A., Robinson, A., Montoya, M., Rypdal, M. and Boers, N.: Overshooting the critical threshold for the Greenland ice sheet, Nature, 622, 528–536, https://doi.org/10.1038/s41586-023-06503-9, 2023.

[49] Moreno-Parada, D., Alvarez-Solas, J., Blasco, J., Montoya, M., and Robinson, A.: Simulating the Laurentide Ice Sheet of the Last Glacial Maximum, The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023, 2023.

[48] Malmierca-Vallet, I., Sime, L. C., and the D–O community members: Dansgaard–Oeschger events in climate models: review and baseline Marine Isotope Stage 3 (MIS3) protocol, Clim. Past, 19, 915–942, https://doi.org/10.5194/cp-19-915-2023, 2023.

[47] Swierczek‐Jereczek, J., Robinson, A., Blasco, J., Alvarez‐Solas, J. and Montoya, M.: Time‐scale synchronisation of oscillatory responses can lead to non‐monotonous R‐tipping, Scientific Reports, 13, 2104, https://doi.org/10.1038/s41598-023-28771-1, 2023.

2022

[46] Kloenne, U., Nauels, A., Pearson, P., DeConto, R. M., Findlay H. S., Hugelius, G., Robinson, A., Rogelj, J., Schuur, E. A. G., Stroeve, J. and Schleussner, C.-F.: Only halving emissions by 2030 can minimize risks of crossing cryosphere thresholds, Nature Climate Change, https://doi.org/10.1038/s41558-022-01566-4, 2022.

[45] Willeit, M., Ganopolski, A., Robinson, A., and Edwards, N. R.: The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation​​​​​​​​​​​​​​, Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, 2022.

[44] Robinson, A., Goldberg, D., and Lipscomb, W. H.: A comparison of the stability and performance of depth-integrated ice-dynamics solvers, The Cryosphere, 16, 689–709, https://doi.org/10.5194/tc-16-689-2022, 2022.

2021

[43] Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S. and Coumou, D.: Increasing heat and rainfall extremes now far outside the historical climate, NPJ Climate and Atmospheric Science, 45, 1-4, doi: 10.1038/s41612-021-00202-w, 2021.

[42] Born, A. and Robinson, A.: Modeling the Greenland englacial stratigraphy, The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, 2021.

[41] Blasco, J., Alvarez-Solas, J., Robinson, A., and Montoya, M.: Exploring the impact of atmospheric forcing and basal drag on the Antarctic Ice Sheet under Last Glacial Maximum conditions, The Cryosphere, 15, 215–231, https://doi.org/10.5194/tc-15-215-2021, 2021.

2020

[40] Robinson, A., Alvarez-Solas, J., Montoya, M., Goelzer, H., Greve, R., and Ritz, C.: Description and validation of the ice-sheet model Yelmo (version 1.0), Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, 2020.

[39] Petrakopoulou, F., Robinson, A., Olmeda-Delgado, M.: Impact of climate change on fossil fuel power-plant efficiency and water use, 273, 122816, doi: j.jclepro.2020.122816, 2020.

2019

[38] Tabone, I., Robinson, A., Alvarez-Solas, J., and Montoya, M.: Submarine melt as a potential trigger of the North East Greenland Ice Stream margin retreat during Marine Isotope Stage 3, The Cryosphere, 13, 1911–1923, https://doi.org/10.5194/tc-13-1911-2019, 2019.

[37] Capron, E., Rovere, A., Austermann, J., Axford, Y., Barlow, N., Carlson, A., de Vernal, A., Dutton, A., Kopp, R., McManus, J., Menviel, L., Otto-Bliesner, B., Robinson, A., Shakun, J., Tzedakis, P. and Wolff, E.: Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials, Quaternary Science Reviews, 219, 308-311, doi:j.quascirev.2019.06.030, 2019.

[36] Alvarez-Solas, J., Banderas, R., Robinson, A., and Montoya, M.: Ocean-driven millennial-scale variability of the Eurasian ice sheet during the last glacial period simulated with a hybrid ice-sheet–shelf model, Clim. Past, 15, 957-979, doi:10.5194/cp-15-957-2019, 2019.

[35] Blasco, J., Tabone, I., Alvarez-Solas, J., Robinson, A. and Montoya, M.: The Antarctic Ice Sheet response to glacial millennial-scale variability, Clim. Past, 15(1), 121–133, doi:10.5194/cp-15-121-2019, 2019.

[34] Tabone, I., Robinson, A., Alvarez-Solas, J. and Montoya, M.: Impact of millennial-scale oceanic variability on the Greenland ice-sheet evolution throughout the last glacial period, Clim. Past, 15(2), 593–609, doi:10.5194/cp-15-593-2019, 2019.

2018

[33] Tabone, I., Blasco, J., Robinson, A., Alvarez-Solas, J. and Montoya, M.: The sensitivity of the Greenland Ice Sheet to glacial-interglacial oceanic forcing, Clim. Past, 14(4), 455–472, doi:10.5194/cp-14-455-2018, 2018.

[32] Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556(7700), 191–196, doi:10.1038/s41586-018-0006-5, 2018.

[31] Banderas, R., Alvarez-Solas, J., Robinson, A. and Montoya, M.: A new approach for simulating the paleo evolution of the Northern Hemisphere ice sheets, Geosci. Model Dev., 11, 2299–2314, doi:10.5194/gmd-11-2299-2018, 2018.

[30] Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G., Favier, L., Fettweis, X., Goelzer, H., Golledge, N. R., Kuipers Munneke, P., Robinson, A., et al.: The Greenland and Antarctic ice sheets under 1.5 °C global warming, Nat. Clim. Chang., doi:10.1038/s41558-018-0305-8, 2018.

2017

[29] Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A. and Montoya, M.: MIS-11 duration key to disappearance of the Greenland ice sheet, Nat. Commun., 8, doi:10.1038/ncomms16008, 2017.

[28] Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H., Jobbins, G., Marcus, R., Mengel, M., Robinson, A., et al.: Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups, Reg. Environ. Chang., doi:10.1007/s10113-017-1144-2, 2017.

[27] Goelzer, H., Robinson, A., Seroussi, H. and van de Wal, R. S. W.: Recent Progress in Greenland Ice Sheet Modelling, Curr. Clim. Chang. Reports, 3, 291–302, 2017.

[26] Krapp, M., Robinson, A. and Ganopolski, A.: SEMIC: An efficient surface energy and mass balance model applied to the Greenland ice sheet, Cryosphere, 11(4), 1519–1535, doi:10.5194/tc-11-1519-2017, 2017.

[25] Reyer, C. P. O., Otto, I. M., Adams, S., Albrecht, T., Baarsch, F., Cartsburg, M., Coumou, D., Eden, A., Ludi, E., Marcus, R., Mengel, M., Robinson, A., et al.: Climate change impacts in Central Asia and their implications for development, Reg. Environ. Chang., 17(6), 1639–1650, doi:10.1007/s10113-015-0893-z, 2017.

[24] Serdeczny, O., Adams, S., Baarsch, F., Coumou, D., Robinson, A., Hare, W., Schaeffer, M., Perrette, M. and Reinhardt, J.: Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions, Reg. Environ. Chang., doi:10.1007/s10113-015-0910-2, 2017.

[23] Vinke, K., Martin, M. A., Adams, S., Baarsch, F., Bondeau, A., Coumou, D., Donner, R. V., Menon, A., Perrette, M., Rehfeld, K., Robinson, A., et al.: Climatic risks and impacts in South Asia: extremes of water scarcity and excess, Reg. Environ. Chang., doi:10.1007/s10113-015-0924-9, 2016.

[22] Reyer, C. P. O., Adams, S., Albrecht, T., Baarsch, F., Boit, A., Canales Trujillo, N., Cartsburg, M., Coumou, D., Eden, A., Fernandes, E., Langerwisch, F., Robinson, A., et al.: Climate change impacts in Latin America and the Caribbean and their implications for development, Reg. Environ. Chang., doi:10.1007/s10113-015-0854-6, 2015.

2016

[21] Yau, A., Bender, M., Robinson, A. and Brook, E.: Reconstructing the Last Interglacial at Summit Greenland: Insights from GISP2, Proc. Natl. Acad. Sci. U. S. A., 113(35), 9710–9715, doi:10.1073/pnas.1524766113, 2016.

[20] Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion, B. and Winkelmann, R.: Future sea level rise constrained by observations and long-term commitment, Proc. Natl. Acad. Sci. U. S. A., 201500515, doi:10.1073/pnas.1500515113, 2016.

[19] Petrakopoulou, F., Robinson, A. and Loizidou, M.: Simulation and analysis of a stand-alone solar-wind and pumped-storage hydropower plant, Energy, 96, 676–683, doi:10.1016/j.energy.2015.12.049, 2016.

[18] Petrakopoulou, F., Robinson, A. and Loizidou, M.: Simulation and evaluation of a hybrid concentrating-solar and wind power plant for energy autonomy on islands, Renew. Energy, 96, 863–871, doi:10.1016/j.renene.2016.05.030, 2016.

2015

[17] Calov, R., Robinson, A., Perrette, M. and Ganopolski, A.: Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization, Cryosph., 9, 179–196, doi:10.5194/tc-9-179-2015, 2015.

[16] Robinson, A. and Perrette, M.: NCIO 1.0: a simple Fortran NetCDF interface, Geosci. Model Dev., 8(6), 1877–1883, doi:10.5194/gmd-8-1877-2015, 2015.

[15] Willeit, M., Ganopolski, A., Calov, R., Robinson, A. and Maslin, M.: The role of CO2 decline for the onset of Northern Hemisphere glaciation, Quat. Sci. Rev., 119, 22–34, doi:10.1016/j.quascirev.2015.04.015, 2015.

[14] Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S. and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Chang., 5, 1–6, doi:10.1038/nclimate2554, 2015.

[13] Petrakopoulou, F., Robinson, A. and Loizidou, M.: Exergetic analysis and dynamic simulation of a solar-wind power plant with electricity storage and hydrogen generation, J. Clean. Prod., doi:10.1016/j.jclepro.2015.11.074, 2015.

2014

[12] Banderas, R., Alvarez-Solas, J., Robinson, A. and Montoya, M.: An interhemispheric mechanism for glacial abrupt climate change, Clim. Dyn., (44), 2897–2908, doi:10.1007/s00382-014-2211-8, 2014.

[11] Robinson, A. and Goelzer, H.: The importance of insolation for paleo ice sheet modeling, Cryosph., 8, 1419–1428, doi:10.5194/tc-8-1419-2014, 2014.

2013

[10] Coumou, D., Robinson, A. and Rahmstorf, S.: Global increase in record-breaking monthly-mean temperatures, Clim. Change, 118(3–4), 771–782, doi:10.1007/s10584-012-0668-1, 2013.

[9] Levermann, A., Clark, P., Marzeion, B., Milne, G. A., Pollard, D., Radić, V. and Robinson, A.: The multimillennial sea-level commitment of global warming, Proc. Natl. Acad. Sci. U. S. A., 110(34), 13745–13750, doi:10.1073/pnas.1219414110, 2013.

[8] Alvarez-Solas, J., Robinson, A., Montoya, M. and Ritz, C.: Iceberg discharges of the last glacial period driven by oceanic circulation changes, Proc. Natl. Acad. Sci. U. S. A., doi:10.1073/pnas.1306622110, 2013.

[7] Coumou, D. and Robinson, A.: Historic and future increase in the global land area affected by monthly heat extremes, Environ. Res. Lett., 8(3), 034018, doi:10.1088/1748-9326/8/3/034018, 2013.

2012

[6] Robinson, A., Calov, R. and Ganopolski, A.: Multistability and critical thresholds of the Greenland ice sheet, Nat. Clim. Chang., 2(4), 429–432, doi:10.1038/nclimate1449, 2012.

[5] Alvarez-Solas, J., Robinson, A. and Ritz, C.: Brief communication “Can recent ice discharges following the Larsen-B ice-shelf collapse be used to infer the driving mechanisms of millennial-scale variations of the Laurentide ice sheet?,” Cryosph., 6(3), 687–693, doi:10.5194/tc-6-687-2012, 2012.

2011

[4] Robinson, A., Calov, R. and Ganopolski, A.: Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Clim. Past, 7(2), 381–396, doi:10.5194/cp-7-381-2011, 2011.

[3] Ganopolski, A. and Robinson, A.: Palaeoclimate: The past is not the future, Nat. Geosci., 4(10), 661–663, doi:10.1038/ngeo1268, 2011.

2010

[2] Robinson, A., Calov, R. and Ganopolski, A.: An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change, Cryosph., 4(2), 129–144, doi:10.5194/tc-4-129-2010, 2010.

2007

[1] Keller, K., Robinson, A., Bradford, D. F. and Oppenheimer, M.: The regrets of procrastination in climate policy, Environ. Res. Lett., 2(2), 024004, doi:10.1088/1748-9326/2/2/024004, 2007.

Commissioned Reports

[4] Asian Development Bank: A Region at Risk: The Human Dimensions of Climate Change in Asia and the Pacific, Manila, Philippines [online] Available from: http://dx.doi.org/10.22617/TCS178839-2, 2017.

[3] World Bank: Turn Down the Heat: Confronting the New Climate Normal, Washington D.C. [online] Available from: http://hdl.handle.net/10986/20595, 2014.

[2] World Bank: Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience, Washington D.C. [online] Available from: http://hdl.handle.net/10986/14000, 2013.

[1] World Bank: Turn Down the Heat: Why a 4°C Warmer World Must Be Avoided, Washington D.C. [online] Available from: http://hdl.handle.net/10986/11860, 2012.

PhD thesis

Robinson, A.: Modeling the Greenland Ice Sheet response to climate change in the past and future, University of Potsdam. [online] Available from: http://opus.kobv.de/ubp/volltexte/2011/5043/, 2011.